Plectasin, First Animal Toxin-Like Fungal Defensin Blocking Potassium Channels through Recognizing Channel Pore Region
نویسندگان
چکیده
The potassium channels were recently found to be inhibited by animal toxin-like human β-defensin 2 (hBD2), the first defensin blocker of potassium channels. Whether there are other defensin blockers from different organisms remains an open question. Here, we reported the potassium channel-blocking plectasin, the first defensin blocker from a fungus. Based on the similar cysteine-stabilized alpha-beta (CSαβ) structure between plectasin and scorpion toxins acting on potassium channels, we found that plectasin could dose-dependently block Kv1.3 channel currents through electrophysiological experiments. Besides Kv1.3 channel, plectasin could less inhibit Kv1.1, Kv1.2, IKCa, SKCa3, hERG and KCNQ channels at the concentration of 1 μΜ. Using mutagenesis and channel activation experiments, we found that outer pore region of Kv1.3 channel was the binding site of plectasin, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin blockers. Together, these findings not only highlight the novel function of plectasin as a potassium channel inhibitor, but also imply that defensins from different organisms functionally evolve to be a novel kind of potassium channel inhibitors.
منابع مشابه
The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels
Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαβ-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We foun...
متن کاملUnique Mechanism of the Interaction between Honey Bee Toxin TPNQ and rKir1.1 Potassium Channel Explored by Computational Simulations: Insights into the Relative Insensitivity of Channel towards Animal Toxins
BACKGROUND The 21-residue compact tertiapin-Q (TPNQ) toxin, a derivative of honey bee toxin tertiapin (TPN), is a potent blocker of inward-rectifier K(+) channel subtype, rat Kir1.1 (rKir1.1) channel, and their interaction mechanism remains unclear. PRINCIPAL FINDINGS Based on the flexible feature of potassium channel turrets, a good starting rKir1.1 channel structure was modeled for the acce...
متن کاملMapping of maurotoxin binding sites on hKv1.2, hKv1.3, and hIKCa1 channels.
Maurotoxin (MTX) is a potent blocker of human voltage-activated Kv1.2 and intermediate-conductance calcium-activated potassium channels, hIKCa1. Because its blocking affinity on both channels is similar, although the pore region of these channels show only few conserved amino acids, we aimed to characterize the binding sites of MTX in these channels. Investigating the pH(o) dependence of MTX bl...
متن کاملProtein ligands for studying ion channel proteins
Protein toxins from venomous organisms have provided remarkable insights into the structure and mechanism of ion channel proteins (Kalia et al., 2015). One classic example is the work of Rod MacKinnon, Chris Miller, and their colleagues on the mechanism by which high-conductance calcium-activated potassium channels (or BK channels for Big K conductance) are inhibited by charybdotoxin (Anderson ...
متن کاملPseudechetoxin Binds to the Pore Turret of Cyclic Nucleotide–gated Ion Channels
Peptide toxins are invaluable tools for studying the structure and physiology of ion channels. Pseudechetoxin (PsTx) is the first known peptide toxin that targets cyclic nucleotide-gated (CNG) ion channels, which play a critical role in sensory transduction in the visual and olfactory systems. PsTx inhibited channel currents at low nM concentrations when applied to the extracellular face of mem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015